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INTRODUCTION

As the calendar turned to 1992, the conditions that had dominated
military planning for almost half a century came to an end with
the dissolution of the Soviet Union. In anticipation of a world that
required less military manpower, the United States cut its active
duty forces by about a third in the decade that followed [1]. This
was often referred to as the “peace dividend.” Unfortunately,
while the nature of the threat changed, the world arguably
became a more dangerous place. In fact, Beckett [2] states that:
“Between 1990 and 1996 there were at least 98 [significant]
conflicts inflicting 5.5 million deaths, but only seven of these were
waged between recognized states.”

The challenges facing our armed forces are fundamentally
different than they were just over a decade ago. Consequently,
our forces are undertaking an ambitious effort to fundamentally
change. As Secretary of Defense Rumsfeld [3] states: “What's
taking place in the conflict [Afghanistan], in the global war on
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terrorism, and the distinctively new threats we're facing,
[provides] the impetus to transformation.” Similarly, we need to
transform an analysis infrastructure that is built to analyze a well-
studied and stable situation. Specifically, we need agile tools and
analysis methods that allow us to quickly gain and effectively
communicate insights into dynamic, asymmetric situations. In
particular, to better assist senior decision-makers in structuring,
equipping, and employing military forces to face the new threat,
we need to understand more about the intangible human
elements of combat (leadership, morale, unit cohesiveness, etc.) in
medium and low intensity conflicts involving adaptive
adversaries. Towards that end, the Marine Corps Warfighting
Laboratory’s Project Albert seeks to exploit the advances in
computing power and new technologies to “provide quantitative
answers...to important questions facing military decision-
makers,” Brandstein [4].

Under Project Albert’s guidance, many diverse organizations have
built a series of relatively simple models, along with data farming
and visualization environments in which they can be explored.
These models, by design, are fast-running, flexible, and easy to
use. They strive to include only that detail which is absolutely
necessary to capture the “essence” of the problem. Furthermore,
these models are typically used in an exploratory manner. That is,
the models assist us in reasoning about extremely complex
systems and processes by helping generate hypotheses or
assessing the consequences of assumptions.

While Project Albert’s simulations are small when compared to
traditional Department of Defense (DoD) models, they still
contain scores of variables an analyst may desire to explore. To
do so efficiently requires experimental designs (the specification of
the input variables) that allow us to efficiently sample from the
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vast number of potentially interesting input combinations.
Furthermore, techniques that help us uncover relationships in the
output data are also vital for effective exploration. In this paper,
we highlight two methods that we have found particularly helpful
in a series of explorations on a variety of models and scenarios—
see Lucas et al. [5] and Sanchez et al. [6]. They are applied in a
study of guerrilla combat involving a skirmish that author Ipekci
experienced. The first method, dealing with generating inputs, is
Latin hypercube designs (see [7]). The second method is
classification and regression trees (CART)—which are good at
uncovering relationships in large data sets (see [8]).

The outline of this paper is as follows. The next section describes
the guerilla infiltration scenario we investigated. This is followed
by sections that describe the model (MANA) that we used and the
experimental design (a specially constructed Latin hypercube).
The subsequent section summarizes the results with CART and
multiple additive regression tree (MART) models. A concluding
section discusses the main findings.

THE SKIRMISH

One of the most prominent examples of guerrilla forces fighting
against a conventional force is the recent 15-year conflict between
Turkey and the Kurdistan Workers Party (PKK). The Marxist-
Leninist PKK was formed in 1974, with the goal of establishing a
Kurdish state in southeastern Turkey. The PKK is one of 34
organizations on the U.S. State Department’s list of designated
foreign terrorist organizations [9]. In Turkey’s conflict with the
PKK, approximately 100,000 Turkish soldiers fought continuously
against a PKK force of about 10,000. The conflict has claimed
more than 30,000 lives. While the majority of casualties have been
civilians, approximately 4,000 Turkish soldiers have been killed.
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Author Ipekci served in this conflict as a tank platoon commander
in the southeast of Turkey. His experiences motivated this case
study.

In September 1999, Lieutenant Ipekci was ordered to move his
platoon in order to secure a hilltop along Turkey’s border with
Iraq. The platoon was composed of two tanks, two armored
combat vehicles, and 11 infantrymen. Their mission was to take
up a position on the hilltop to protect the area against terrorist
activities and interdict forces seeking to enter Turkey. Given the
hilltop’s strategic value they knew that they were a desirable
target for PKK forces.

A few weeks later, before dawn one morning, 11 terrorists
equipped with light infantry weapons attacked. The attack began
when a two-man reconnaissance team initiated heavy fire upon
the platoon in an attempt to distract their attention. The
remaining nine attackers split into two squads (of size four and
five) and attempted to infiltrate the platoon’s position from two
directions shortly after the firing commenced. The skirmish lasted
for almost half an hour. Just before daybreak, after losing four
combatants while inflicting only minimal losses on the platoon
(two injured soldiers and minor equipment damage), the attackers
withdrew.

This type of engagement increasingly occurs around the globe in
situations where lightly armed guerrillas use speed and surprise
to battle superior conventional forces. As such, we use it as a
vehicle to examine how things might have changed if Ipekci’s
platoon was deployed differently, there were more attackers, they
were more capable (i.e., had better weapons, combat effectiveness,
unit cohesion, or aggression), and other questions. In addition,
any real engagement is a single realization of an event that might
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have substantial variability associated with it. That is, in an
otherwise identical scenario, events may unfold quite differently
due simply to random chance. Therefore, when determining the
lessons learned from historical battles it is important to
understand the range of possible outcomes that could have
occurred (or could happen in similar situations).

SIMULATING THE ENGAGEMENT IN MANA

The skirmish described in the previous section was replicated in
the agent-based simulation Map Aware Non-uniform Automata
(MANA), see Figure 1. As an agent-based simulation, the agents
(software objects representing infantry soldiers, platoon
commanders, tanks, etc.) make decisions autonomously about
where to move, whom to shoot at, etc. These agents are aware of,
and interact with, their local environment through relatively
simple internal decision rules. The rules determine an agent’s
“personalities,” such as their desires to move toward or away
from a destination, alive and injured friendly agents, and enemy
agents. These traits are often used to model so-called intangibles,
such as aggressiveness. Additionally, variables can be defined
that affect group behavior —such as the difference in forces
required for an agent in a unit to want to advance towards an
enemy agent. An agent's physical characteristics include their
abilities to sense, communicate, and engage other agents. See
Lauren and Stephen [10] for a detailed description of MANA.

From among the available simulations, MANA was selected for
the following reasons. MANA's user interface allows one to easily
construct and visually assess new scenarios. Individual battles of
this size take only a few seconds to simulate on a PC. This,
combined with the fact that MANA is resident at super computing
centers (specifically, the Maui High Performance Computing
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Center (MHPCC) and the Mitre Corporation in Woodbridge,
Virginia), enables us to generate hundreds of thousands of
simulated battles. Critical functional capabilities that MANA
affords include the ability to influence agent-movement with
way-points, event-driven personality changes (e.g., an agent’s
desire to move towards the enemy can be programmed to change
if he is shot at), and an internal situational map that allows agents
to have a memory of enemy contacts.
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Figure 1: MANA Infiltration Scenario

It is important to emphasize that MANA models physical events
(e.g., detections and engagements) with low resolution.
Furthermore, as with most combat simulations, the differences
between MANA'’s outputs and the real world have not been
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quantified. Thus, we do not want to put too much credibility in
specific output values. Rather, we are using our exploration to
glean insights whose veracity needs to be externally tested —
perhaps with real battle data or warfighting experiments.
Moreover, we see these results as one part of the operational
synthesis process. That is, the process of combining the
information obtained from a family of diverse analytical tools to
provide the most compelling analyses—see Brandstein [4].

DESIGNING THE COMPUTATIONAL
EXERIMENTS

This section describes the variables that are selected for
exploration to address the issues discussed above. Manual trial
and error on hundreds of MANA input variables indicated that
we should explore more than a score of them. Of course, if we
wish to be able to measure interactions (e.g., synergistic effects)
among variables they need to be varied simultaneously. With so
many variables to explore, a gridded design is infeasible. Thus,
we choose to use a specially constructed Latin hypercube. Since
we have found these designs particularly useful in high-
dimensional explorations we detail their construction.

MANA Variables Selected for Exploration

Our exploration varies a total of 24 factors. Two are simple
excursions from the baseline scenario. They are another Blue force
(the defending tank platoon) disposition (to see if this affects
results) and a second Red force (the attacking terrorists) attack
plan (the new one utilizes three infiltration teams).

We explore the remaining 22 variables in all three scenarios (the
base line and two excursions). Generally, they fall into the
following classes. Nine of the input variables define the Red
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force’s physical abilities (number, stealth, lethality, and mobility).
Three parameters control individual Red agents” propensities to
stay with their comrades (alive and injured) and move towards
Blue agents—the latter represents their aggressiveness. Two
additional Red force variables control which Blue targets (infantry
or vehicles) the Red agents prefer to shoot at. Two more variables
constrain the Red agents’ group behavior. Specifically, they limit
the size of Red groups and the difference in manpower (between
Red and Blue) required for a Red agent to advance towards the
Blue force. Finally, we vary a total of six parameters that define
the Blue force’s capabilities. These six relate to the Blue agents’
stealth, sensing ability, and lethality. For a specific description of
the variables and their levels see Ipekci [11].

Our measures of effectiveness are the proportion of Blue agents
killed and the proportion of Red agents killed. Clearly, we want
to minimize the former while maximizing the latter.

Latin Hypercube Designs

The designs we use are variants of the basic Latin hypercube
design. We choose this family of designs because they are easy to
construct in a broad range of situations and they generate results
that provide flexibility in fitting models where there is
considerable a priori uncertainty about the forms of the response
surfaces—as in our example. Specifically, Latin hypercubes allow
us to screen a large number of variables for significance, while
simultaneously providing us with the ability to fit complex
models (including non-parametric) on the most important
variables.

In Latin hypercube sampling, the input variables are treated as
random variables with known distribution functions. For each of
k input variables, labeled Xi fori=1, 2,..., k, “all portions of [Xi’s]
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distribution [are] represented by input values” by dividing its
range into “n strata of equal marginal probability 1/n, and
[sampling] once from [within] each strata” (McKay et al. [7]). For
each X;, the n sampled input values are assigned at random to the
n cases—with all n! possible permutations being equally likely.
This determines the column in the design matrix for Xi and is
done independently for each of the k input variables. A great
strength of basic Latin hypercubes is that they are easy to generate
for all k and n.

We illustrate the construction of a basic Latin hypercube when
there are five input variables (i.e., k = 5) that we wish to explore
over the region [-1, 1]°—and must do so with only n =11 samples.
In our explorations, we sample each variable uniformly (i.e., their
input distribution is a discrete uniform). Thus, all of the five
variables will take each of the values (-1, -.8, -.6,...,1) exactly once
in the 11-run design. The first input combination is selected by
independently sampling once (with all input values being equally
likely) from each variable —see the row corresponding to Run 1 in
Table 1. The second input combination is obtained by
independently sampling from the 10 remaining input values for
each variable. This creates Run 2. We continue this until Run 11,
where we use the value that is left over for each input variable.
The result is that each variable is uniformly sampled over its
range. In this illustration we have scaled all of the input variables
so that their domain is [-1, 1]. The same process applies to any
rectangular region if the experimenter wants to uniformly sample
each factor. Moreover, one need not limit themselves to uniform
distributions. If there is a need to sample some regions more
heavily than others, non-uniform distributions should be used.
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Run Xi X2 X3 X X5
1 0.2 -0.8 -0.4 -0.2 -0.8
2 0 0.6 0.2 0 -0.6
3 -0.8 1 -0.8 0.6 1
4 -1 -1 0.4 -0.8 0.2
5 0.4 -0.4 0 0.2 0.8
6 0.6 0 0.8 -1 0.4
7 -0.4 0.4 -0.2 -0.6 -1
8 -0.6 -0.6 -1 0.8 -0.4
9 0.8 -0.2 1 0.4 0.6
10 1 0.8 -0.6 1 0
11 -0.2 0.2 0.6 -0.4 -0.2

Table 1: Example Latin Hypercube Design Matrix

Figure 2 shows the two-dimensional projections of all 10 pairs of
input variables in our example. We see that by using uniform
distributions the input points are scattered throughout the region
to be explored. If we used a traditional two-level, full-factorial
(also known as a gridded) design all of these points would be in
the corners of the panels. A three-level, full-factorial design adds
a point to the centers of the panels, as well as one in the middle of
each of the panels’ four boundaries. This design, with three levels
for each factor, requires 3° (i.e., 243) runs. Clearly, Latin
hypercubes give us much better space-filling than traditional
gridded designs.

This Latin hypercube is just one of many possible designs that
could have been generated —depending on the random sampling.
In this example, one concern is correlations between the input
variables. In fact, the correlation between X3 and X« is —.6.
Correlations between input variables can reduce the effectiveness
of many analytic procedures—such as regression and CART.
When the number of input combinations (1) is sufficiently large
with respect to the number of factors (k), there will likely be
relatively small correlations between columns in the design
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matrix, see [5] and [12]. When this is not the case, special Latin
hypercubes (even ones that are orthogonal —i.e., with zero
correlations between columns of the design matrix) may exist.
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In our analyses we use the recently developed nearly orthogonal
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Figure 2: Scatter Plot of All Pairs of Input Variables From Table 1

Latin hypercubes of Cioppa [13]. These designs are nearly

orthogonal —with a maximum pairwise correlation between

columns of the design matrix of less than .03. Furthermore, they

also tend to have much better space-filling properties than a

randomly generated basic Latin hypercube. For each of the three
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scenarios, we simulate 513 input combinations of the 22 variables.
For each of these, 100 replications are made. Thus, for each
scenario 51,300 engagements are simulated.
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EXPLORING THE DATA

Making sense of the outputs from hundreds of thousands of
simulated battles is quite a challenge. For analysts, this is a good
problem to have —much better than having too little data. One
advantage of the nearly orthogonal Latin hypercubes we use is
that they provide tremendous analytic flexibility. In fact,

Ipekci [11] analyzed the data graphically using the software
packages S-Plus, Clementine, Ggobi, and Netica. Analytic
methods applied to the data range from the simple sign test to a
variety of advanced statistical techniques, including cluster
analysis, neural networks, regression trees, linear regression, and
Bayesian networks. In this section, we summarize our findings on
the baseline scenario that we obtain with regression trees. We
focus on regression trees because we have found them
particularly valuable in finding structure in large simulation
output data sets and believe that tree models, as a whole, are
underutilized by military operations research analysts.
Furthermore, the results are readily interpretable.

Red Killed

This subsection uses tree models to look at the proportion of Red
killed in the baseline scenario as a function of the 22 input
variables previously discussed [—=gression trees are hierarchical
tree models that show structuré=A the data by sequentially
partitioning the data into homogeneous subsets through a series
of simple bifurcation rules. One reason trees are becoming
popular in data exploration is that they automatically generate
models without the necessity of the user specifying the basic form
of the relationships between the predictors and the response — for
example, a linear, nonlinear, or additive model. In addition, trees
do not require distributional assumptions—thus, transformations
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are not needed. In fact, the results are invariant to monotone re-
expressions of the predictors. Moreover, interactions between
variables are naturally obtained as the tree is built. Furthermore,
trees are robust to outlying data.

The best way to explain how to construct and interpret a
regression tree is by example. We now do so with the regression
tree fit to the proportion of Red killed data—see Figure 3.

Initially, all of the observations start in a single group or "node."
A measure of the heterogeneity of the node’s responses (called
impurity) is made. If all of the responses are the same the impurity
is zero. Our impurity measure (using S-plus [14]) is the sum of
the squared residuals. We want to partition the data into a set of
homogeneous nodes one split at a time. This is done by
considering every possible split of the form “Xi<a” (where X, for
i=1,2,...,22, are the independent variables and a is a real number).
From among all of these, the split that gives the smallest sum of
the impurities of the two child nodes is made. In this case, the
data are split into two sets, one containing the observations such
that “Red.Stealth < 123.5” and the other containing the remaining
observations, i.e., “Red.Stealth > 123.5”.

As we go down the tree, each of the two child nodes are then
candidates for splitting —until a stopping condition is met.
Specifically, a given node will split if it contains enough
observations (as determined by the user) and the split improves
upon the tree’s purity by a specified amount. For the
“Red.Stealth > 123.5” node, the data is partitioned into sets by the
“Red.Movement < 28” and “Red.Movement > 28" rules. These
are terminal nodes—i.e., they are not split further. The model
then estimates, for example, that if {“Red.Stealth > 123.5” and
“Red.Movement > 28"} then the proportion of Red killed is
.10450.
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Red.Stealth<123.5
[

Red.Stealth<108.5 Red.Movement<28

Red.Movement<77.5 Red.Nym<16.5

0.8812 0.1045

Red.Movement<105.5 Recon.Stealth<2.5 Red.Stealth<115.5

0.9710

Red.Movement<100.5 Red.Stealth<120.5

0.9600 0.1578 0.7348 0.5175

Red.Movement<103.5

0.9331 0.9312 0.7002

Red.Movement<104.5
0.0834

0.4586 0.8418
Figure 3: Regression Tree for the Proportion of Red Agents Killed
Our fitted tree model partitions the data into 13 sets—i.e., terminal
nodes. Only four of the 22 variables appear in the tree. They are:

Red.Stealth: This parameter affects the probability that an agent
can be seen —with higher values meaning the (Red infiltration)
agent is less likely to be detected.

Red.Movement: This parameter affects the speed of (Red)
agents—with greater numbers meaning faster agents.

Red.Num: This is the total number of Red agents in the
infiltration teams.

Recon.Stealth: This is the stealth of the two Red reconnaissance
agents.

The tree fit is quite good, with a residual mean deviance (which is
the sum of the squared differences between the data and what the
model would predict divided by the number of samples) of .006.
Thus, knowledge of just these four variables is enough to
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accurately estimate the proportion of Red killed. Also, we obtain
quite good discrimination in the response —as the mean losses in
the 13 terminal nodes range from below .1 to above .9. Note that
several of the nodes split on Red.Movement near the value of 100.
It turns out that this is a function of a discontinuity in MANA’s
movement algorithm —see Wolf [15]. Another note of interest is
that none of the variables associated with the Blue force appears
in the tree.

What is the importance of the 18 variables that do not appear in
the tree? To answer this we use multiple additive regression trees
(MART). MART models are designed to predict. They consist of
a series of regression trees—hence it is difficult to interpret them.
However, Hastie et al. [16] provide a heuristic that quantifies the
relative importance of the 22 predictor variables depending on
how often they appear in the trees and how much they reduce the
impurity. Figure 4 displays the relative importance values for Red
killed on a scale of zero (of no importance) to 100 (the most
important). We see that Red.Stealth and Red.Movement are the
two most important predictors, followed by Red.Num and
Recon.Stealth. Not until the sixth most important predictor do
we get a factor associated with the Blue force —in this case the
single shot probability of kill for Blue infantrymen. Another
interesting point is that the Red personality parameters do not
have much influence on the proportion of Red killed in this
scenario.
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Relative Variable Importance

Red.wl
Red.w8
Recon.Sensor
Infantry.Stealth
Recon.Firing
Red.w3
Recon.SSKP
Red.Combat
Recon.Max.Trgt
Red.w2
Infantry.Firing
Red.w10
Infantry.Sensor
Vehicles.Sensor
Red.Cluster
Vehicles.Firing
Infantry. SSKP
Red.SSKP
Recon.Stealth
Red.Num
Red.Movement
Red.Stealth

T T T T T 1
0 20 40 60 80 100

Relative importance

Figure 4 MART’s Relative Importance of the Variables for the Proportion of
Red Agents Killed

Blue Killed

Figures 5 and 6 display the regression tree and MART’s relative
importance values for the 22 predictors on the proportion of Blue
killed. Here, seven predictors appear in the regression tree—
which also has 13 terminal nodes. Once again, all of the tree’s
predictors are associated with the Red force. Three of the
variables, Red.Stealth, Red.Num, and Recon.Stealth were in the
proportion of Red killed tree. The four new variables are:

Recon.Firing: This factor controls the range at which Red
reconnaissance agents can effectively engage Blue agents.

Recon.Sensor: This parameter defines the range that Red
reconnaissance agents are able to detect Blue agents.

Red.SSKP: This variable affects the lethality of the Red
infiltration agents.
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Red.w1: This parameter determines the Red infiltration agent’s
propensity to move towards friendly agents (i.e., mass with other
infiltration agents) when in contact with Blue agents.

Red.Stealth<111.5
I

Red.Nym<24.5 Red.S$KP<24
Recon.Stegalth<108.5 Red.SSKP<45.5 Red.Num<9.5
0.1003
Recon.F{ring<69.5 Red.Stealth<69.5 Red.S$KP<95
0.0301 0.0434 0.1429
Recon.Sgnsor<62.5 Red.Ww1<19
0.0422 0.1468 0.4625 0.6074
Red.Num<28
0.1183 0.5449 0.5029

0.3857 0.0030

Figure 5: Regression Tree for the Proportion of Blue Agents Killed

Once again, the most important variable (i.e., first split variable) is
Red.Stealth. The mean residual deviance is a little higher in this
tree, with a value of .016, and the mean proportions of Blue killed
range from .03012 to .60740. In this scenario, the Red force is
particularly lethal when they are stealthy, there are a large
number of them, the reconnaissance team has capable sensors,
and their single shot probability of kill is high.

We see from MART’s relative importance rankings (see Figure 6)
that stealth, single shot probability of kill, and the number of Red
forces are the most important variables. Once again, it is striking
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that the most important predictors (the top 13 in this case) are all
associated with the Red force.

Relative Variable Importance

Recon.Max.Trgt
Red.w2
Red.wl

Infantry.Stealth
Infantry.Sensor
Vehicles.Firing
Vehicles.Sensor
Infantry.SSKP
Infantry.Firing
Red.w8
Red.w10
Red.Cluster
Red.w3
Red.Combat
Recon.SSKP
Red.Movement
Recon.Sensor
Recon.Stealth
Recon.Firing
Red.Num
Red.SSKP
Red.Stealth

r T T T T 1
0 20 40 60 80 100

Relative importance

Figure 6: MART’s Relative Importance of the Variables for the Proportion of
Blue Agents Killed

CONCLUSIONS

Terrorist organizations almost always face conventional forces
with vastly superior firepower. Hence, when engaging
conventional forces terrorists usually resort to guerrilla tactics. In
this exploration we use special Latin hypercubes to see how a
large number of variables affect Blue and Red losses in a MANA
scenario based upon a guerrilla attack on conventional forces.
Regression trees help us make sense of the output of over 150,000
simulated battles. They reveal that both Blue and Red losses
depend almost solely on factors associated with the Red force—in
particular the Red force’s stealth and mobility.

Strategically, our findings suggest the importance of taking
actions to inhibit terrorists” abilities to mass, train, and acquire
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weapons and sensors. The results also imply that improvements
in the ability to detect terrorists may offer Blue more in both
survivability and lethality than enhanced firepower. This might
be accomplished through technical means (better sensors) or
different force mixes (perhaps more reconnaissance elements). Of
course, as with all force-on-force combat simulation generated
hypotheses, their veracity, if possible, should be tested with other
models, warfighting experiments, and/or examining real data.
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